Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.307546

ABSTRACT

During the COVID-19 pandemic, structural biologists rushed to solve the structures of the 28 proteins encoded by the SARS-CoV-2 genome in order to understand the viral life cycle and enable structure-based drug design. In addition to the 204 previously solved structures from SARS-CoV-1, 548 structures covering 16 of the SARS-CoV-2 viral proteins have been released in a span of only 6 months. These structural models serve as the basis for research to understand how the virus hijacks human cells, for structure-based drug design, and to aid in the development of vaccines. However, errors often occur in even the most careful structure determination - and may be even more common among these structures, which were solved quickly and under immense pressure. The Coronavirus Structural Task Force has responded to this challenge by rapidly categorizing, evaluating and reviewing all of these experimental protein structures in order to help downstream users and original authors. In addition, the Task Force provided improved models for key structures online, which have been used by Folding@Home, OpenPandemics, the EU JEDI COVID-19 challenge and others.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.330324

ABSTRACT

Coronaviruses, like SARS-CoV-2, encode a nucleotidyl transferase in the N-terminal NiRAN domain of the non-structural protein (nsp) 12 protein within the RNA dependent RNA polymerase (RdRP). Though the substrate targets of the viral nucleotidyl transferase are unknown, NiRAN active sites are highly conserved and essential for viral replication. We show, for the first time, the detection and sequence location of GMP-modified amino acids in nidovirus RdRP-associated proteins using heavy isotope-assisted MS and MS/MS peptide sequencing. We identified lys-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of nucleotidylation in vitro that uses a phosphoramide bond to covalently attach with GMP. In SARS-CoV-2 replicase proteins, we demonstrate a unique O-linked GMP attachment on nsp7 ser-1, whose formation required the presence of nsp12. It is clear that additional nucleotidylation sites remain undiscovered, which includes the possibility that nsp12 itself may form a transient GMP adduct in the NiRAN active site that has eluted detection in these initial studies due to instability of the covalent attachment. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients.


Subject(s)
Infections , Multiple Sclerosis , Arteritis
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.329748

ABSTRACT

Microglia, the resident brain immune cells, play a critical role in normal brain development, and are impacted by the intrauterine environment, including maternal immune activation and inflammatory exposures. The COVID-19 pandemic presents a potential developmental immune challenge to the fetal brain, in the setting of maternal SARS-CoV-2 infection with its attendant potential for cytokine production and, in severe cases, cytokine storming. There is currently no biomarker or model for in utero microglial priming and function that might aid in identifying the neonates and children most vulnerable to neurodevelopmental morbidity, as microglia remain inaccessible in fetal life and after birth. This study aimed to generate patient-derived microglial-like cell models unique to each neonate from reprogrammed umbilical cord blood mononuclear cells, adapting and extending a novel methodology previously validated for adult peripheral blood mononuclear cells. We demonstrate that umbilical cord blood mononuclear cells can be used to create microglial-like cell models morphologically and functionally similar to microglia observed in vivo. We illustrate the application of this approach by generating microglia from cells exposed and unexposed to maternal SARS-CoV-2 infection. Our ability to create personalized neonatal models of fetal brain immune programming enables non-invasive insights into fetal brain development and potential childhood neurodevelopmental vulnerabilities for a range of maternal exposures, including COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL